Sains Malaysiana 54(1)(2025): 21-31
http://doi.org/10.17576/jsm-2025-5401-03
The Potential of
CO2 Sequestration from Basaltic Rock in Peninsular Malaysia
(Potensi Penyerapan CO2 daripada Batuan Basaltik di Semenanjung Malaysia)
AHMAD
FAUZAN YUSOFF, HIJAZ KAMAL HASNAN*, MUHAMMAD HATTA ROSELEE, KHAIRUL AZLAN
MUSTAPHA & AZMAN ABDUL GHANI
Department of
Geology, Faculty of Science, Universiti of Malaya,
50603 Kuala Lumpur, Malaysia
Diserahkan: 18 April 2024/Diterima:
7 November 2024
Abstract
Basaltic
rock is a efficient for
long-term solution in carbon dioxide (CO₂) sequestration because of its
ability to chemically bind CO₂ in stable and form a solid mineral, which
minimizes the risk of leakage and for permanent storage. This study
investigates the mineralogy and geochemistry of Segamat and Kuantan basalts in Peninsular Malaysia to evaluate their suitability for
mineral carbonation. Petrographic and mineralogical analyses indicate basalt
contains silicate minerals, which are plagioclase (50-60)%,
pyroxene (20-30)% and olivine (10-20)% that are highly conducive to CO2 mineral carbonation. Calcite, magnesite, and siderite are expected to form
carbonate minerals through chemical reactions. FESEM analysis shows that
basaltic rocks have microcracks and micropores, which are tiny spaces within
the rock. These structures provide pathways and space for CO₂ to flow and
react with the rock, making it easier for the gas to be stored as solid
carbonates. This porosity enhances CO₂ absorption and mineralization,
improving the efficiency of carbon sequestration. The strategic location of
Kuantan near seawater sources offers unlimited access during CO2 injection activities. Both regions exhibit metaluminous properties that are compatible with a diverse range of mineral carbonation
techniques. The Segamat and Kuantan basalts are ideal
for CO₂ mineral carbonation due to their reactive silicate minerals,
potential for carbonate formation (calcite, magnesite, siderite), and favorable microcrack structures. Their metaluminous,
silica-undersaturated composition and Kuantan’s proximity to water sources
enhance their potential for effective CO₂ storage and mineralization.
Keywords: Carbon
dioxide sequestration; Kuantan basalt; mineral carbonation; Segamat basalt
Abstrak
Batuan basal adalah berkesan untuk jangka panjang bagi pengasingan karbon dioksida (CO₂)
kerana kemampuannya untuk menggabungkan CO₂ secara kimia dalam bentuk mineral pepejal yang stabil,
yang meminimumkan risiko kebocoran dan memastikan penyimpanan yang kekal. Penyelidikan ini merangkumi aspek mineralogi dan geokimia basal dari Segamat dan Kuantan di Semenanjung Malaysia untuk menilai kesesuaian terhadap karbonasi mineral. Analisis petrografi dan mineralogi menunjukkan bahawa basal mengandungi mineral silikat, iaitu plagioklas (50-60)%, piroksen (20-30)% dan olivin (10-20)% yang sangat sesuai untuk karbonasi mineral
CO₂. Kalsit, magnesit dan siderit dijangka terbentuk melalui reaksi kimia. Analisis FESEM menunjukkan bahawa batuan basal mempunyai mikro-retakan dan mikro-pori,
yang merupakan ruang kecil dalam batu. Struktur ini menyediakan laluan dan ruang untuk CO₂ mengalir dan bertindak balas dengan batu, memudahkan gas disimpan sebagai karbonat pepejal. Kekosongan ini meningkatkan penyerapan CO₂ dan mineralisasi serta memperbaiki kecekapan pengasingan karbon. Lokasi strategik Kuantan yang dekat dengan sumber air laut menawarkan akses tanpa had semasa aktiviti suntikan CO₂. Kedua-dua kawasan menunjukkan sifat metaluminous yang serasi dengan pelbagai teknik karbonasi mineral.
Basal Segamat dan Kuantan adalah sesuai untuk karbonasi mineral CO₂ kerana mineral silikat reaktif yang ada berpotensi untuk pembentukan karbonat (kalsit, magnesit, siderit) serta struktur mikro-retakan yang secara semula jadi ada. Komposisi metaluminous dan kekurangan silika serta jarak Kuantan dengan sumber air meningkatkan potensi mereka untuk penyimpanan dan mineralisasi CO₂ yang berkesan.
Kata kunci: Karbonasi mineral; Kuantan
basal; penjerapan karbon dioksida; Segamat basal
RUJUKAN
Alfredsson, H.A., Oelkers,
E.H., Hardarsson, B.S., Franzson,
H., Gunnlaugsson, E., Gislason,
S.R. 2013. The geology and water chemistry of the Hellisheidi,
SW-Iceland carbon storage site. International Journal of Greenhouse Gas
Control 12: 399-418.
Ayub, S.A., Haylay,
T., Omeid, R. & Amin, B.P. 2020. Potential for CO2 mineral
carbonation in the Paleogene Segamat Basalt of
Malaysia. Minerals 10(12): 1045.
Bignell, J.D. & Snelling, N.J. 1977.
Geochronology of Malayan Granites. Overseas Geology and Mineral Resources 47: 71.
Callow, B., Falcon-Suarez, I., Matter,
J.M., Ramkumar, M. & Benning, L.G. 2018. Geoengineering applications for
basalt rock-an overview of the potential for CO2 mineral carbonation
and storage. The Geological Society of London. p. 660.
Chakraborty, K.R. 1977. Olivine Nephlinite and limburgite from
Kuantan Pahang. Warta Geologi 3(1): 1-5.
Debon, F. & Le Fort, P. 1983. A
chemical-mineralogical classification of common plutonic rocks and
associations. Earth Science 73: 135-149.
Declercq, J., Bosc, O. & Oelkers,
E.H. 2013. Do organic ligands affect forsterite dissolution rates? Applied
Geochemistry 39: 69-77.
Deer, W.A., Howie, R.A. & Zussman, J. 1992. An Introduction to the Rock-Forming
Minerals. 2nd ed. Essex: Longman Scientific & Technical.
Dessert, C., Dupré,
B., Gaillardet, J., François, L.M. & Allègre, C.J. 2003. Basalt weathering laws and the impact
of basalt weathering on the global carbon cycle. Chemical Geology 202(3-4): 257-273.
Fitch, F.H. 1951. The geology and mineral resouces of the neighbourhood of Kuantan, Pahang. Geological
Survey Department Federation of Malaya, Memoir 6. p. 144.
Gavurova, B., Rigelsky,
M. & Ivankova, V. 2021. Greenhouse gas emissions
and health in the countries of the European Union. Frontiers in Public
Health 9: 756652.
Gerdemann, S.J., O’Connor, W.K., Dahlin, D.C., Panner, L.R. & Rush, H. 2007. Ex situ aqueous
mineral carbonation. Environmental Science Technology 41: 2587-2593.
Ghani, A.A. & Taib,
N.I. 2007. New trace, major and rare earth elements data for Early Pleistocene
alkali olivine basalt and olivine nephlinites from
Kuantan Pahang: Plume related rift volcanics or
wrench related crustal extension. Bulletin Geological Society Malaysia 53: 111-117.
Ghoshal, S. & Zeman, F.
2010. Carbon dioxide (CO2) capture and storage technology in
the cement and concrete industry. In Developments and Innovation in Carbon
Dioxide (CO2) Capture and Storage Technology, edited by Maroto-Valer, M.M. Cambridge: Woodhead Publishing. pp.
469-491.
Gifkins, C., Herrmann, W. & Large, R. 2005. Altered
Volcanic Rocks: A Guide to Description and Interpretation. Hobart:
University of Tasmania.
Gislason, S.R. & Oelkers,
E.H. 2014. Geochemistry. Carbon storage in basalt. Science (New York,
N.Y.) 344(6182): 373-374.
Gislason, S.R., Broecker,
W.S., Gunnlaugsson, E., Snæbjörnsdóttir,
S., Mesfin, K.G., Alfredsson, H.A., Aradottir, E.S., Sigfusson, B.,
Gunnarsson, I. & Stute, M. 2014. Rapid solubility
and mineral storage of CO2 in basalt. Energy Procedia 63:
4561-4574.
Gislason, S.R., Wolff-Boenisch,
D., Stefansson, A., Oelkers, E.H., Gunnlaugsson, E., Sigurdardottir,
H., Sigfusson, B., Broecker,
W.S., Matter, J.M. & Stute, M. 2010. Mineral
sequestration of carbon dioxide in basalt: A pre-injection overview of the CarbFix project. International Journal of Greenhouse Gas
Control 4: 537-545.
Grubb, P. 1965.
Undersaturated potassic lavas and hypabyssal intrusives in north Johore. Geological Magazine 102: 338-346.
Haile, N.S., Beckinsdale, R.D.,
Chakraborty, K.R., Abdul Hanif Hussein & Hardjono,
T. 1983. Palaeomagnetism, geochronology and petrology of the dolerite dikes and
basaltic lavas from Kuantan, West Malaysia. Bulletin Geological Society
Malaysia 16: 71-85.
Irvine, T.M. & Baragar,
W.R. 1971. A guide to the chemical classification of common volcanic rocks. Canada
Journal Earth Science 8: 523-548.
Koukouzas, N., Koutsovitis,
P., Tyrologou, P., Karkalis,
C. & Arvanitis, A. 2019. Potential for mineral
carbonation of CO2 in Pleistocene basaltic rocks in Volos
Region (Central Greece). Minerals 9: 627.
Lee, H., Kim, T.W., Kim, S.H., Lin, Y.W.,
Li, C.T., Choi, Y. & Choi, C. 2023. Carbon dioxide capture and product
characteristics using steel slag in a mineral carbonation plant. Processes 11(6): 1676.
McGrail, B.P., Schaef, H.T., Ho, A.M., Chien,
Y.J., Dooley, J.J. & Davidson, C.L. 2006. Potential for carbon dioxide sequestration in flood
basalts. Journal Geophysical Research Solid Earth 111: B12201.
Middlemost, E.A.K. 1994. Naming materials
in the magma/igneous rock system. Earth Science Reviews 37:
215-224.
Ng, T.F., Tate, R.B. & Tan, D.N.K.
2008. Geological Map of Peninsular Malaysia. Kuala Lumpur: University
Malaya/Geological Society of Malaysia.
Nunes, L.J.R. 2023. The rising threat of atmospheric
CO2: A review on the causes, impacts, and mitigation
strategies. Environments 10(4): 66.
Oelkers, E.H., Gislason,
S.R. & Matter, J. 2008. Mineral carbonation of CO2. Elements 4(5):
333-337.
Peccerillo, A. & Taylor, S.R. 1976.
Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral Petrol 58: 63-81.
Raj, J.K. 1990. The Kuantan Basalts - A
multi-vent origin. Warta Geologi 16(5):
203-210.
Rasool, M.H. & Ahmad, M. 2023.
Reactivity of Basaltic minerals for CO2 sequestration via in situ mineralization: A review. Minerals 13(9): 1154.
Rosenbauer, R.J., Thomas, B., Bischoff,
J.L. & Palandri, J. 2012. Carbon sequestration
via reaction with Basaltic rocks: Geochemical modelling and experimental
results. Geochimica et Cosmochimica Acta 89: 116-133.
Sanna, A., Uibu, M., Caramanna, G., Kuusik, R. & Maroto-Valer, M. 2014. A review of mineral carbonation
technologies to sequester CO2. Chemical Society Reviews 43:
8049-8080.
Schaef, H.T., McGrail, B.P. & Owen, A.T.
2010. Carbonate mineralization of volcanic province basalts. International
Journal of Greenhouse Gas Control 4: 249-261.
Shand, S.J. 1943. The Eruptive Rocks. 2nd ed. New York: John Wiley. p. 444.
Snæbjörnsdóttir, S.Ó., Wiese, F., Fridriksson, T., Ármansson, H., Einarsson, G.M. & Gislason,
S.R. 2014. CO2 storage potential of basaltic rocks in Iceland and
the oceanic ridges. Energy Procedia 63: 4585-4600.
Stocker, T.F., Qin, D., Plattner, G-K., Tignor, M.M.B., Allen, S.K., Boschung,
J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. &
Working Group I Technical Support Unit. 2013 Climate Change 2013: The
Physical Science Basis. Working Group I
Contribution to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change. Cambridge: Cambridge University Press.
Tajuddin, R.R.M. & Masseran,
N. 2023. Quantifying haze effect using air pollution index data. Sains Malaysiana52(12):
3603-3618.
Taksavasu, T., Arin, P., Khatecha,
T. & Kojinok, S. 2024. Microtextural
characteristics of ultramafic rock-forming minerals and their effects on carbon
sequestration. Minerals 14(6): 597.
Ye, Z., Liu, X., Sun, H., Dong, Q., Du, W.
& Long, Q. 2022. Variations in permeability and mechanical properties of
basaltic rocks induced by carbon mineralization. Sustainability 14(22):
15195.
Yuh, I.P., Evarts, R.C. & Conrey, R.M. 2022. X-ray Fluorescence Geochemistry of
Columbia River Basalt Group Rocks in the Western Columbia River Gorge. U.S.
Geological Survey Data Release.
*Pengarang untuk surat-menyurat; email:
hijazzains@um.edu.my
|